THE IMPACT OF CORPORATE SOCIAL NETWORK ON INNOVATION PERFORMANCE - THE CHAIN MEDIATION EFFECT BASED ON KNOWLEDGE ACQUISITION AND ABSORPTIVE CAPACITY

Ting Chang

Dhurakij Pundit University, Bangkok, Thailand

Innovation is the lifeblood and inexhaustible driving force behind the development of an enterprise. With the continuous improvement of scientific and technological levels, the acceleration of technological change, and the changes in market demand, the complexity and uncertainty of innovation are increasing day by day. Enterprises have to acquire knowledge from outside, to obtain new impetus for enterprise development. The rich knowledge resources contained in corporate social networks provide a foundation for future innovation and development. This article takes Chinese enterprises as the research object and uses open innovation theory, social network theory, and knowledge management theory to construct a conceptual model of "social network-knowledge acquisition-absorptive capacity-innovation performance." Through empirical analysis of 549 valid questionnaires, it was found that networks do not all have a positive effect on enterprise innovation performance. This study shows that network size, network centrality, and network heterogeneity have a positive effect on innovation performance. The effect of network relationship strength on innovation performance is not significant. Knowledge acquisition and absorptive capacity play an important role in society. Network size, network centrality, and network heterogeneity have a chain-mediating role in their impact on corporate innovation performance.

Keywords: social network; knowledge acquisition; absorptive capacity; innovation performance

Introduction

China's economy has gradually eliminated the original extensive, environment- and resource-consuming economic development methods as it enters a stage of high-quality development transformation. Because in the open innovation model, corporate innovation
activities show the characteristics of openness, non-linearity, and networking, innovation has become a cross-organizational, cross-disciplinary, multi-participatory cluster collaboration model. The innovation model tends to be multi-subject collaboration, requiring all innovation subjects to innovate collaboratively in aspects such as resources, environment, and culture (Xie et al., 2012).

Enterprise innovation simply relies on the promotion of macro policies and investment, etc., which cannot enable enterprises to obtain intrinsic and sustainable development momentum. At the same time, enterprise operators have gradually realized the important role of knowledge resources in innovation. Enterprises will acquire enterprise knowledge through spontaneous learning and cooperation.

Knowledge is required for innovation and development to further enhance the core competitiveness of enterprises.

Yang et al. (2017) proposed that social networks are an important organizational method for enterprise knowledge and information acquisition, which can realize the complementarity and diversification of enterprise resources, information, and human capital, thus enabling enterprises to gradually have the ability to complete various complex activities.

Based on the above background, it is not difficult to see that innovation is a necessary way for enterprise development, and open innovation has found a new way out for the sustainable development of enterprises. The role of innovation in enterprise, local, and even national economic development is self-evident.

Research purposes

Based on current research on social networks and innovation performance, this study constructs a theoretical framework for the impact of corporate social networks on corporate innovation performance, explores and verifies its direct impact; after clarifying the relevant concepts of knowledge acquisition and absorptive capacity, this study clarifies the relationship between the two connections and differences, construct a theoretical model of "social network-knowledge acquisition-absorptive capacity-innovation performance", and use structural equation model to test the chain mediating role of knowledge acquisition and absorptive capacity between social network and innovation performance; finally, combined with the characteristics of Chinese enterprises, based on the relevant theories and this research, we put forward relevant management suggestions based on the innovation environment and the innovation dilemmas we face, so as to provide reference for Chinese enterprises’ innovation decision-making.

This study further enriches the research on social networks and knowledge management theory and strengthens the depth of research on the relationship between corporate social networks and innovation.

Literature review

Research on social networks and innovation performance

The study of social networks has gained widespread use in economics and management since the 1990s. This is the result of theoretical development and the need for enterprises to break through management difficulties.
Because social networks play a key role in information transmission, they can reduce management efficiency problems caused by information asymmetry, thereby helping to improve corporate performance.

The enterprise social network is not only an intangible asset of society but also an attribute resource. Each member of the social network owns a sum of capital, known as social capital. The richer the social capital in the network, the more conducive it is to members' knowledge acquisition and the improvement of innovation performance.

When network centrality is high, if the organization has a strong willingness to engage in exploratory innovation, then such innovation activities will be supported by network resources and knowledge, thus helping to improve the overall performance of the enterprise; when an enterprise is embedded in a relationship network, it can form trust, support, and share information resources with network members. When members encounter problems, they can jointly solve them.

Therefore, the focal enterprise can obtain the innovative resources it by the enterprise through a series of interactive activities. Further improve the innovation performance of enterprises.

However, excessive network embedding of enterprises will lead to information redundancy among enterprises, dispersed innovation resource investment, and enterprise resource curse effects. From a long-term perspective, not all network embedding can bring about improvements in innovation performance for enterprises (Li et al., 2022).

In the process of enterprises responding to environmental changes, the pressure brought by the growing coordination network is no longer regarded as a resource but more as a restriction, which is not beneficial to the development of the enterprise.

In addition, the exclusivity of the network, excessive embeddedness, instability of market demand, instability of technology, enterprise life cycle, and strategic goals have all had a significant impact on the negative functions of social networks (Huang, 2019).

Related research on social networks, knowledge acquisition, absorptive capacity, and innovation performance

Enterprises in the current economic environment possess limited knowledge, but external social networks can expand this knowledge.

Research by Deng et al. (2015) shows that enterprise network embeddedness can positively affect knowledge acquisition, in which strong relationships can achieve information sharing, which helps organizations obtain high-quality knowledge, thereby accelerating the knowledge transfer and acquisition process throughout the network. The larger the network size, the more opportunities there are for knowledge exchange and realization among members, and the amount and type of knowledge that enterprises obtain from the outside also increase accordingly.

When social network heterogeneity is high, network members can obtain more heterogeneous external information and resources. As the barriers to knowledge transfer within the network weaken, it is easier for enterprises to obtain heterogeneous knowledge, which further reduces organizational innovation risks.

Absorptive capacity refers to the ability of an enterprise to identify, digest, and utilize external knowledge to achieve business goals. A certain absorptive capacity is the basic ability of an organization to digest and absorb external knowledge, while the degree of
THE IMPACT OF CORPORATE SOCIAL NETWORK

internalization of external knowledge varies greatly. To a large extent, it depends on the level of absorptive capacity (Lane et al., 2006).

Zhao et al. (2018) found that while different knowledge acquisitions play a positive role in corporate innovation, absorptive capacity plays an intermediary role in this process.

The resources, information, and knowledge that an enterprise obtains from the outside world need to be digested, sorted through the enterprise's absorptive capacity, and transformed into resources that the enterprise can utilize based on its own characteristics, and deficiencies and omissions must be identified and filled in a targeted manner, thereby affecting the innovation of the enterprise. Only through activities can the effect of promoting innovation performance be achieved (Chen, 2023).

Strong absorptive capacity can help enterprises better understand external knowledge so that they can quickly absorb, understand, transform, and use the acquired knowledge and improve the level of enterprise innovation.

Li et al. (2022) studied the role of development. Because R&D cooperation brings new knowledge to enterprises, it is absorbed by the enterprise itself and acts on enterprise innovation. At the same time, absorptive capacity can directly promote innovation performance, so absorptive capacity plays a mediating role.

Sun & Ou (2018) also conducted research based on knowledge acquisition and pointed out that knowledge acquisition will have a certain impact on new service development performance, and organizational absorptive capacity plays a positive regulating role between the two.

Xiu & Zuo (2013) found that green entrepreneurial orientation will have a certain impact on green competitive advantage, and knowledge absorption capacity plays a positive regulatory role between the two.

Research design and hypotheses formulation

Corporate social network performance and innovation

Social networks are the key path to obtaining unique information. In terms of network scale, first, the larger the network scale, the more extensive the connections between enterprises, and the transparency and breadth of information also increase, which also stimulates competition among enterprises. In order to stand out among competitors, they will spontaneously strengthen innovation; secondly, as the network scale of the focal enterprise expands, the resources that the enterprise has access to become more abundant, which means that they are more likely to break through the enterprise to carry out innovative activities. Bottleneck, thereby achieving economies of scale in innovation (Baum et al., 2000); third, as the scale of corporate social networks continues to expand, companies have richer knowledge, professional skills, and complementary information transmission channels.

The centrality of the centrality of the position of the network reflects the core position of the enterprise in the social network. It reveals the guidance and leadership role played by the focal enterprise in the network. It also represents the enterprise's ability to acquire and control resources, which reflects its right to speak on the Internet. The higher the network location centrality, the greater the rights and interests enjoyed by enterprises.

They can also choose suitable innovation partners according to their own needs. At the same time, it is more conducive to obtain innovative, forward-looking and strategic heterogeneous information from enterprises. Knowledge to improve enterprise innovation.
performance; social network heterogeneity represents the diversity and diversification of network connections among network nodes, which not only helps enterprises better obtain heterogeneous resources but also allows these resources to be combined with the enterprise's own resources.

Effective integration can provide enterprises with more innovative perspectives and differentiated problem-solving strategies (Tortoriello, 2015), thus improving the innovation performance of enterprises (Rodan & Galunic, 2004); secondly, the heterogeneity of social networks makes enterprises when carrying out innovation activities, we can communicate and cooperate with many different types and different enterprises and learn the heterogeneous and complementary knowledge that enterprises need.

By effectively reducing costs and reducing risk levels, enterprises can build a suitable and sustainable innovation mechanism to ensure the realization of innovation results; ultimately, network members can provide each other with different resources, complementary capabilities, and multiple channels for innovation, thereby improving the efficiency of the use of innovation resources and making the innovation process smoother.

The higher the intensity of the relationship between network members, the higher the degree of trust and intimacy between members, which promotes trust and tacit understanding among members and promotes knowledge sharing and mutual complementation among members, thereby effectively reducing or avoiding conflicts between them. Strengthening the flow of knowledge among network members can effectively improve the innovation performance of enterprises (Rost, 2011); secondly, through in-depth communication and interaction between members, they can better understand and learn the knowledge within the network, helping to improve their own innovation capabilities.

In summary, this article puts forward the following research hypotheses:

H1a: Enterprise social network size has a significant positive impact on innovation performance;
H1b: Corporate social network centrality has a significant positive impact on innovation performance;
H1c: Enterprise social network heterogeneity has a significant positive impact on innovation performance;
H1d: The strength of corporate social network relationships has a significant positive impact on innovation performance.

The chain mediation effect of knowledge acquisition and absorptive capacity

Absorptive capacity is a dynamic integration capability. New knowledge is a prerequisite for absorption. External network knowledge forms an enterprise's external knowledge store through knowledge acquisition.

However, not all knowledge can directly bring innovation to the enterprise. The enterprise must integrate the majority of knowledge. Based on their own actual situation, they can identify the knowledge that is useful to the enterprise and further apply it to enterprise innovation through knowledge integration or creation.

Secondly, the rich knowledge resources provided by corporate social networks for knowledge acquisition promote corporate knowledge acquisition and increase corporate knowledge reserves. Innovation follows the law of quantitative change to qualitative change. Knowledge reserves are the starting point for enterprises to achieve innovative breakthroughs. The social network interaction process Knowledge sharing and acquisition
increase the enterprise's knowledge stock. Knowledge iteration and development on this basis are conducive to the improvement of enterprise innovation capabilities.

In addition, Hou et al. (2024) proposed that knowledge resources can form an "ADSE cycle" inside and outside the enterprise. After dynamic processing, it is finally used by corporate innovation.

During the exchange and cooperation process, network members can acquire various types of knowledge and information and obtain innovative resources. After these resources enter the enterprise, they can speed up the transformation and application of original knowledge, improve the utilization rate of knowledge, and help improve the absorption of enterprises.

Moreover, accelerating the process of external knowledge acquisition helps enterprises improve their knowledge identification capabilities, expand their knowledge stock, digest and apply new knowledge, and promote the improvement of absorptive capacity.

Furthermore, absorptive capacity plays a crucial role in transforming external knowledge into innovation (Qian et al., 2010).

It can effectively apply knowledge to corporate technological innovation and R&D activities, promote changes in corporate production processes, and enhance innovation outcomes and production efficiency.

In summary, this article puts forward the following research hypotheses:

H2a: Knowledge acquisition and absorptive capacity play a mediating role between network size and innovation performance;
H2b: Knowledge acquisition and absorptive capacity play a mediating role between network centrality and innovation performance;
H2c: Knowledge acquisition and absorptive capacity play a mediating role between network heterogeneity and innovation performance;
H2d: Knowledge acquisition and absorptive capacity play a mediating role between network relationship strength and innovation performance;

Sample selection and data sources

This study adopted a questionnaire method and finally obtained 549 valid questionnaires from alumni, relatives, friends, and professional research institutions. It also conducted empirical testing through SPSS25.0 and AMOS25.0.

According to the results of the descriptive statistical analysis of the sample, the skewness values of each item in the measurement scale are all less than 3, and the absolute values of kurtosis are all less than 10.

Therefore, it is believed that the overall sample data has a normal distribution trend, which is not good for the test validity. We can construct a structural equation model to shape the influence.

In order to ensure the rationality and validity of the questionnaire variables, mature scales at home and abroad were used for reference, and corresponding modifications were made according to the limited situation of this study. We measured the questionnaire using a five-point Likert scale, where "1" indicates strongly disagree and "5" indicates strongly agree.

(1) Measurement of innovation performance, combined with the measurement methods of scholars such as Lopes (2018), Zhang et al. (2020), from new product sales, new product
development success rate, new product development speed, management innovation, etc. There are six questions in terms of aspects:

(2) The enterprise social network is measured in four dimensions: network size, network centrality, network heterogeneity, and network relationship strength. Among them, the measurement of network size refers to Chen & Xu (2007) based on the relationship between enterprises, scientific research institutions, suppliers, and major customers.

The network size is measured by the number of connections established with other organizations, and a total of 4 items are set; the measurement of network centrality refers to Li (2009) and Peng et al. (2022), which are measured from the degree of network utilization and the abundance of network information.

A total of 5 items are set; the measurement of network heterogeneity refers to the mature scales of Chang & Wu (2013) and Li (2013), using reverse scoring method, and 4 items are set; the measurement of network relationship strength refers to mature scales such as Kraatz (1998), Peng (2022), Xu & Gavusgil (2019), etc., and set 5 items for measurement from the frequency of exchanges between enterprises and affiliated enterprises, investment, comprehensiveness of cooperation, and reciprocity.

(3) The measurement of knowledge acquisition mainly refers to McKelvie et al. (2008), focusing on market knowledge and technical knowledge, and sets 8 items.

(4) For the measurement of absorptive capacity, refer Peng (2022) to measure it from three aspects: identification ability, digestion ability, and application ability, including 8 items.

Research result

Analysis

To prevent systematic bias caused by common method bias, this study used the control unmeasured potential method factor method (ULMC method) to test the common method deviation problem. Table 6.1 displays the test results. The test results show that the fitting index change difference between the ULMC model and the confirmatory factor model is less than 0.1, which is not significant, so there is no common methodological bias in this study.

<table>
<thead>
<tr>
<th>Model \ index</th>
<th>x²/df</th>
<th>GFI</th>
<th>NFI</th>
<th>IFI</th>
<th>TLI</th>
<th>CFI</th>
<th>RMSEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>The confirmatory factor model</td>
<td>1.298</td>
<td>0.923</td>
<td>0.932</td>
<td>0.983</td>
<td>0.982</td>
<td>0.983</td>
<td>0.023</td>
</tr>
<tr>
<td>ULMC model</td>
<td>1.234</td>
<td>0.927</td>
<td>0.935</td>
<td>0.987</td>
<td>0.986</td>
<td>0.987</td>
<td>0.021</td>
</tr>
</tbody>
</table>

Reliability and validity analysis

The Cronbach’s alpha coefficient of each variable scale in the study was analyzed. The test results showed that the Cronbach’s alpha coefficient of each variable in the questionnaire was greater than 0.7, and the CIT was greater than 0.5. From the “Cronbach’s alpha value of the item,” deleting any question would not cause an increase in the Cronbach’s alpha value, indicating that the variable had good reliability.

The confirmatory factor analysis of each variable was performed using the AMOS25.0 software in the CFA model. The load of the standardized factor of each variable was greater
THE IMPACT OF CORPORATE SOCIAL NETWORK

than 0.6, the component reliability (CR) was greater than 0.7, and the average variant extraction (AVE) was greater than 0.5, indicating that each variable has good convergent validity.

Tab. 2 illustrates the use of the AVE square root judgment in this study to assess the differential validity. 2. The correlation coefficients between variables were smaller than the AVE square root, indicating that the scale has good discriminatory validity.

We evaluated the collinearity problem in this study using the expansion factor (VIF) value to exclude the influence of collinearity. The test results showed that the VIF values of each variable were between 1.485 and 1.947, and VIF <10 indicated that there is no collinearity problem, so the next study can be conducted.

Hypothesis test

The structural equation model was constructed as shown in Fig. 1, with the simulated fitting index CMIN/DFD of 1.225 (<3), GFI, AGFI, NFI, TLI, IFI, and CFI all reaching the criteria above 0.9, an RMR of 0.040 (<0.08), and an RMSEA of 0.020 (<0.08), and the overall SEM model had a good fit.

Table 2 - Results of correlation statistics and differential validity analysis

(Compiled by the author)

<table>
<thead>
<tr>
<th>variable</th>
<th>network scale</th>
<th>network centr</th>
<th>network heterogeneity</th>
<th>network off. strength</th>
<th>knowledge gain</th>
<th>absorb. ability</th>
<th>bring forth new ideas</th>
<th>innovative performance</th>
<th>AVE</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>network size</td>
<td>0.753</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network center degree</td>
<td>0.453***</td>
<td>0.754</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network heterogeneity</td>
<td>0.446***</td>
<td>0.473***</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network relationship intensity</td>
<td>0.575***</td>
<td>0.510***</td>
<td>0.445***</td>
<td>0.797</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>knowledge acquisition</td>
<td>0.547***</td>
<td>0.602***</td>
<td>0.555***</td>
<td>0.606***</td>
<td>0.749</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>absorbing capacity</td>
<td>0.557***</td>
<td>0.538***</td>
<td>0.550***</td>
<td>0.592***</td>
<td>0.657***</td>
<td>0.773</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovative performance</td>
<td>0.614***</td>
<td>0.581***</td>
<td>0.574***</td>
<td>0.598***</td>
<td>0.697***</td>
<td>0.703***</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVE</td>
<td>0.567</td>
<td>0.569</td>
<td>0.562</td>
<td>0.625</td>
<td>0.561</td>
<td>0.579</td>
<td>0.608</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIF</td>
<td>1.494</td>
<td>1.556</td>
<td>1.485</td>
<td>1.614</td>
<td>1.974</td>
<td>1.943</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: P <0.001 is ***; 0.001 P <0.01 is **; 0.01 P <0.05 is *;
Pathway testing and analysis

The path analysis and inspection results showed that the standardization coefficients of the three paths of social network size, network centrality, network heterogeneity, and innovation are 0.182, 0.11, and 0.127, respectively, and the P values of the three paths are less than 0.05, indicating that the influence of the three paths has significant positive effects; therefore, H1a, H1b, and H1c are established; the influence of network relationship strength on innovation performance is 0.079, and the P-value is 0.090 (> 0.05), assuming H1d is not established.

Table 3 - Analysis and test results

<table>
<thead>
<tr>
<th>way</th>
<th>standardization coefficient</th>
<th>S.E.</th>
<th>C.R.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovation performance network scale</td>
<td>0.182</td>
<td>0.05</td>
<td>3.902</td>
<td>***</td>
</tr>
<tr>
<td>Innovation performance network centrality degree</td>
<td>0.111</td>
<td>0.052</td>
<td>2.483</td>
<td>0.013</td>
</tr>
<tr>
<td>Heterogeneity of innovation performance networks</td>
<td>0.127</td>
<td>0.053</td>
<td>2.897</td>
<td>0.004</td>
</tr>
<tr>
<td>Innovation performance network relationship strength</td>
<td>0.079</td>
<td>0.052</td>
<td>1.695</td>
<td>0.090</td>
</tr>
</tbody>
</table>

Note: P < 0.001 is ***; 0.001 P < 0.01 is **; 0.01 P < 0.05 is *
THE IMPACT OF CORPORATE SOCIAL NETWORK

Indirect effect test

Because according to the AMOS path test analysis, it was found that the path "innovation performance network relationship strength" is not significant, in this model, Wen et al. (2004) proposed a three-step intermediary inspection program because the main effect is not significant; therefore, knowledge acquisition and absorption ability in social network relationship strength and innovation performance have no chain intermediary effect. Assuming H2d is not established, the indirect effect test is no longer for knowledge acquisition, absorption ability in network relationship strength, and innovation performance of the chain intermediary role.

The indirect effect test was run 5000 times by AMOS 25.0 using the Bootstrap method, yielding the level value of percentile at 95% confidence, as shown in Tab. 4.

Table 4 - Results of the indirect effect test of sample variables
(Compiled by the author)

<table>
<thead>
<tr>
<th>way</th>
<th>Effect value</th>
<th>Percentile 95%CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network size _ knowledge acquisition _ absorption capacity _ innovation performance</td>
<td>0.013</td>
<td>0.004</td>
<td>0.025</td>
</tr>
<tr>
<td>Network centrality _ knowledge acquisition _ absorption capacity _ innovation performance</td>
<td>0.022</td>
<td>0.009</td>
<td>0.037</td>
</tr>
<tr>
<td>Network heterogeneity _ knowledge acquisition _ absorptive capacity _ innovation performance</td>
<td>0.018</td>
<td>0.007</td>
<td>0.032</td>
</tr>
</tbody>
</table>

According to the path coefficient test results in Tab. 4, there are three dimensions of the corporate social network: network scale, network centrality, and network heterogeneity. The indirect effect values on innovation performance through absorption ability and knowledge acquisition are 0.013, 0.022, and 0.018, respectively. P values were less than 0.05. Both the lower and upper values of the 95% CI do not contain 0. Show that knowledge acquisition and absorption capacity have a chain mediation effect in these 3 pathways, with an effect proportion of 4.69%, 9.52%, and 7.29%, respectively; therefore, H2a, H2b, and H2c are assumed to be true.

Summary and discussion

Corporate social networks have a positive effect on innovation performance, but not all network characteristics are so. With the expansion of enterprise network scale, enterprises can identify and obtain network relationship resources that are more rich, which means that the network can provide Shared resources and rich enterprises can learn from the social network's knowledge resources, help expand the enterprise's information capacity, and provide source power for enterprise innovation and development. The heterogeneous social network provides enterprises with differentiated knowledge resources that may be complementary to enterprises' own resources and improve the utilization rate of enterprise innovation resources.

The exchange and integration of different ideas and different knowledge stimulates innovative enterprise thinking and provides more differentiated problem solutions for
enterprises. Enterprises in the center of the network can have access to more and more comprehensive information, and the rich knowledge resources are beneficial to improving their own knowledge systems. At the same time, they can avoid the risks brought by information asymmetry and improve the success rate of innovation.

Close network relationship, to form group effect between members, in order to protect the interests of the group, the network has a certain exclusive, to external new knowledge, in this case, the ideas in the frequent communication between network members, have resources gradually tend to equivalence, network members is difficult to stimulate and support each other innovation, the maintenance of the strong relationship of network members need to pay a lot of energy and resources, to some extent, from the enterprise investment in innovation, is not conducive to enterprise innovation.

Knowledge acquisition and absorption ability play a chain intermediary role in enterprise social network scale, network centrality, network heterogeneity, and innovation performance. Open innovation theory under the enterprise social network for enterprise innovation provides rich knowledge resources; enterprises get new knowledge from the network, enriching the original knowledge base. In the process of processing to acquire knowledge, enterprises need to call existing knowledge of new knowledge evaluation, digestion, and integrated application; therefore, the resource acquisition process is the process of dynamic improvement.

The amount and absorption ability of external knowledge that enterprises can absorb and utilize in the process of innovation are the key factors that determine the success of innovation. Only when this external knowledge is effectively absorbed and transformed can it be effectively applied to innovative activities to generate new products and services.

Combined with the empirical research and this part, this study concludes that knowledge acquisition and absorption ability play a chain intermediary role in corporate social network scale, network centrality, network heterogeneity, and innovation performance.

Based on the article, in the process of writing and researching related literature and thinking, I think enterprise innovation is the real society and academia, its significance, and in addition, the relationship between social networks and enterprise innovation performance influence research has achieved fruitful results, but there is still research space, and the final knowledge as the inexhaustible source of innovation will continue.

References

THE IMPACT OF CORPORATE SOCIAL NETWORK

Paper submitted 11 January 2024
Paper accepted for publishing 03 March 2024
Paper revised 14 March 2024
Paper published online 30 March 2024